SLAB DYNAMICS IN 3D MANTLE MODELS

The applicability of Stokes Law to a "Perfect **Plate**" model

Abigail Plimmer, J Huw Davies, James Panton plimmerar@cardiff.ac.uk School of Earth & Environmental Sciences, Cardiff University

INTRODUCTION

- Numerous studies have sought to understand slab sinking dynamics
- 3D spherical models driven by 'perfect' plate at the surface used to understand relationship between slab properties & dynamics
- Aim to relate slab sinking to Stokes Law & how this can be used to tune geodynamic models

STOKES LAW

Stokes Law describes drag force of particle sinking through sphere^[1]:

$F_D = 3\pi\mu V d_n K_n$

 μ = viscosity, V = velocity, d_n = diameter of sphere with same projected surface area as slab normal to direction of motion, and shape factor K_n^[2]:

 $K_n = 1/(0.197+0.627\psi+0.24d_v/d_n-0.029d_{max}/d_n)$

 d_v = diameter of sphere with same volume as object, d_{max} = max dimension of the object along principal axis and $\psi = :$

surface area of the object

Simplify slabs to 3D sheet descending vertically, x = trench length, y = depth of slab in mantle, z =thickness of the slab.

METHODS

Generate plate motion reconstruction in GPlates^[3]

Specify latitude & longitude values of subduction trench & spreading ridge, joined by transform faults along line of latitude

Export velocities to TERRA^[4] grid

Assign tracking particles to moving plate

Vary simulation parameters

Repeat for simulations initiated with plate motion history at the surface, then left to develop with free slip boundary condition

REFERENCE MODEL PARAMETERS

- Rayleigh Number = $\sim 10^7$ • Ref. Viscosity = 10^{23} Pa s
- Model Duration = 500 Myr
- Surface Plate Velocity = 4 cm/yr • Plate geometry = $\pm 35^{\circ} x \pm 35^{\circ}$

UNIVERSITY

PRIFYSGOL

CAERDY D

