THE ROLE OF OCEANIC, CONTINENTAL **& CRATONIC LITHOSPHERE ON** MANTLE CIRCULATION

Abigail Plimmer¹, J. Huw Davies¹, James Panton¹ ¹School of Earth & Environmental Sciences, Cardiff University, CF10 3AT

1. INTRODUCTION

2. METHODS

- Downwellings & upwellings represent the coupling between the mantle and lithosphere, yet there is much still to learn about their evolutions
- Mantle models do not consider the complexity of the lithosphere and it is often modelled as a rigid lid with constant viscosity & density
- We implement oceans, continents, & cratons with different densities, viscosities & thicknesses

• We aim to investigate the effect of surface conditions on upper mantle dynamics

DENSIT	VISCOSITY		1
Ref.density set for each domain Used to calculate buoyancy forces	Viscosity is calculated in simulation, then increased by a specific factor for each domain	Viscosity a density varia are set t specified ra layers	a I a I O I d

Case_003	Weak continents, viscous cratons
Case_004	Thick viscous cratons
Case_005	Thick viscous continents, v.thick viscous cratons
Case_006	Weak, thick continents, v.thick viscous cratons
Case_007	Buoyant, viscous continents & cratons

a) Example slice through viscosity field for case_005. (b) Same as (a), showing viscosity as seen at the surface when Time = 0 Ma.

3. MANTLE TEMPERATURE & SLAB SINKING

4. RELATIONSHIP BETWEEN MANTLE CIRCULATION AND SUPERCONTINENTS

SPATIAL RELATIONSHIP BETWEEN MANTLE & LITHOSPHERE STRUCTURES:

During supercontinent amalgamation, downwellings are localised beneath supercontinent with weak continents (case_006)

In other models, downwellings are proximal to the edges of the continents and cratons, suggesting that great visocisty contrasts may facilitate subduction

Where continents are weak, it takes longer to develop significant instability beneath viscosity contrast at the surface for slabs to descend through transition zone

In our hottest model (case_005, 275 Ma) the large upwelling ascends beneath the more viscous cratonic core of the supercontinent

Thick lithosphere exacerbates the variation in mantle temperature; both the hottest and coldest models have thick

SUPERCONTINENT AMALGAMATION VS DISPERSAL:

Periods of continent dispersal have greater surface heat flow; mantle temperature is therefore lower during supercontinental breakup

Slabs are often more coherent in case_006, where instabilities require some time to develop

Downwellings preferentially descend at greatest viscosity contrasts

Supercontinents may have a lot of viscosity contrasts in relatively smaller area due to the distribution of continents and cratonic cores

When continents are weak, downwellings are localised at the x1000 viscosity contrast between continents and cratons

When continents and cratons

5. CONCLUSIONS

Viscosity structure of the lithosphere can significantly alter whole mantle dynamics

Great viscosity contrasts will act to localise downwellings

Whilst the average mantle temperature varies across simulations, and this may be exacerbated by lithosphere thickness and buoyancy, the greatest changes are a function of time

Weak continents require more time to develop instabilities whilst a viscous continental lithosphere descends rapidly through the mantle

May have implications on the duration of a mantle convection and supercontinent cycles

FUTURE WORK:

Implement temperature dependent viscosities to better represent Earth-like dynamics

Compare outputs to seismic tomographic models to determine optimum lithosphere configuration for Earth-like simulations

Consider other surface parameters which may influence slab sinking (i.e. plate velocity)

are strong, downwellings localise at the continentocean boundary

6. REFERENCES

[1] Müller, R.D., Flament, N., Cannon, J., Tetley, M.G., Williams, S.E., Cao, X., Bodur, Ö.F., Zahirovic, S. and Merdith, A., 2022. A tectonic-rules-based mantle reference frame since 1 billion years ago-implications for supercontinent cycles and plate-mantle system evolution. Solid Earth, 12(7) and 1107-1115. 13(7), pp.1127-1159.

- [2] Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S. H. & Zahirovic, S. 2018. GPlates: building a virtual Earth through deep time. Geochemistry, Geophysics, Geosystems, 19, 2243-2261.
 [3] Baumgardner, J.R., 1983. A three-dimensional finite element model for mantle convection.
- University of California, Los Angeles.

7. ACKNOWLEDGEMENTS

This work was supported by NERC GW4+ DTP and used the ARCHER2 UK National Supercomputing Service (https://www.archer2.ac.uk).

We acknowledge the support of the Supercomputing Wales project, which is partfunded by the European Regional Development Fund (ERDF) via Welsh Government.